

SSCP143GN5

Digital Transistor(built-in resistors)

> Features

VCC	VIN	ю	R1	R2/R1
-50V	-30~+5V	-100mA	4.7kΩ	10

> Description

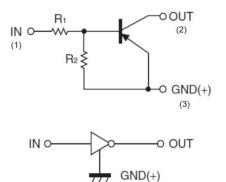
Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see equivalent circuit).

The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of almost completely eliminating parasitic effects.

Only the on/off conditions need to be set for operation, making the device design easy.

> Applications

- Inverter
- Interface
- Driver


> Ordering Information

Device	Package	Shipping	
SSCP143GN5	DFN1616-3L	3000/Reel	

Pin configuration

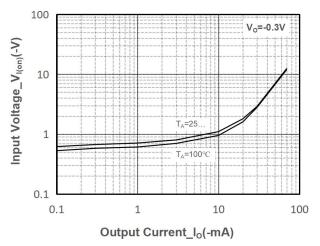
DFN1616-3L

Circuit Diagram

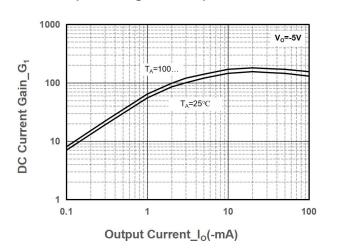
Marking(Top View)

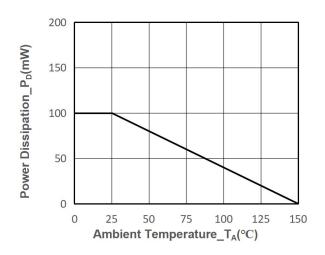
SSCP143GN5

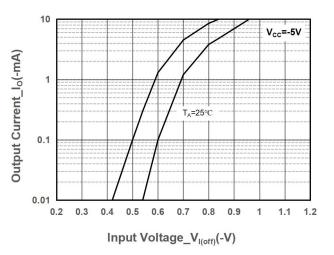
➤ Absolute Maximum Ratings(T_A=25[°]C unless otherwise noted)

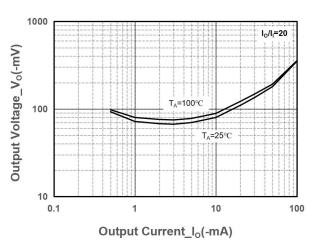

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	-50	V
Input Voltage	VIN	-30~+5	V
Output current	lo	-100	mA
Power Dissipation	PD	100	mW
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C

> Electrical Characteristics ($T_A=25^{\circ}C$ unless otherwise noted)


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
nput Voltage	VI (off)	V _{CC} =-5V, I _O =-100µA	-0.5			V
	VI (on)	V ₀ =-0.3V, I ₀ =-5mA			-1.3	V
Output Voltage	V _{ON (on)}	l₀/l₁=-5mA/-0.25mA			-0.3	V
Input Current	lı –	V _I =-5V			-1.8	mA
Output Current	I _{O (off)}	V _{CC} =-50V, V _I =0			-0.5	μA
DC Current Gain	G1	I _C =-5V, I _O =-10mA	80			
Input resistance	R₁		3.3	4.7	6.1	kΩ
Resistance ratio	R ₂ /R ₁		8	10	12	
Transition fraguency	f⊤	Vo=-10V, Io=-5mA		250		MHz
ransition frequency		f=100MHz				IVITIZ

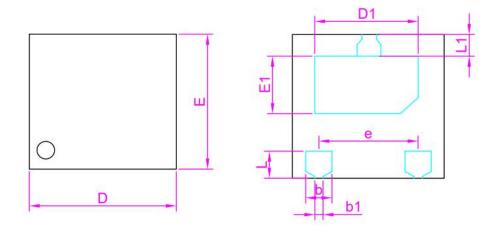

> Typical Performance Characteristics (T_A=25°C unless otherwise noted)

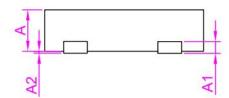

Input Voltage vs. Output Current


DC Current Gain vs. Output Current

Power derating vs. Ambient temperature

Output Current vs. Input Voltage




Output Voltage vs. Output Current

> Package Information

DIM	Millimeters				
DIM	Min.	Тур.	Max.		
A	0.50	0.55	0.60		
D	1.55	1.60	1.65		
E	1.55	1.60	1.65		
b	0.35	0.40	0.45		
L	0.35	0.40	0.45		
е	1.00BSC				
D1	1.15	1.20	1.25		
E1	0.50	0.55	0.65		
b1	0.15	0.20	0.25		
L1	L1 0.20		0.30		
A1	0.15BSC				
A2	0.00	0.00 0.025 0.05			

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.